2.7 μm emission of high thermally and chemically durable glasses based on AlF3

نویسندگان

  • Feifei Huang
  • Yaoyao Ma
  • Weiwei Li
  • Xueqiang Liu
  • Lili Hu
  • Danping Chen
چکیده

AlF3-based glasses (AlF3-YF3-CaF2-BaF2-SrF2-MgF2) with enhanced thermal and chemical stability were synthesized and compared with the well-known fluorozirconate glass (ZBLAN). The 2.7 μm mid-infrared emission in the AlF3-based glasses was also investigated through the absorption and emission spectra. Both the temperature of glass transition and the characteristic temperatures (ΔT, Hr, k(gl)) of the fluoroaluminate glasses were much larger than those of the ZBLAN glasses. The corrosion phenomenon can be observed by naked-eye, and the transmittance dropped dramatically (0% at 3 μm) when the ZBLAN glass was placed into distilled water. However, the AlF3-based glass was relatively stable. The fluoroaluminate glasses possessed large branching ratio (20%) along with the emission cross section (9.4×10(-21) cm(-2)) of the Er(3+):(4)I(11/2)→(4)I(13/2) transition. Meanwhile, the enhanced 2.7 μm emission in highly Er(3+)-doped AYF glass was obtained. Therefore, these results showed that this kind of fluoride glass has a promising application for solid state lasers at 3 μm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses

Er3+-doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to comp...

متن کامل

The Prevention of Environmental Damage in Durable Unsymmetrical Huge-capacitors Based on MnO2 and Fe2O3 Nanotubes

The prevention of environmental damage in durable unsymmetrical huge-capacitor (UHC) with α-MnO2 nanotubes and amorphous Fe2O3 nanotubes grown on flexible carbon fabric is first designed and fabricated. The assembled novel flexible UHC device with an extended operating voltage window of 1.6 V exhibits excellent performance such as a high energy density of 0.55 mWh/cm3 and good rate capability. ...

متن کامل

Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass

Er(3+) doped oxyfluoride tellurite glasses have been prepared. Three Judd-Ofelt parameters Ωt (t=2, 4, 6) and radiative properties are calculated for prepared glasses. Emission characteristics are analyzed and it is found that prepared glasses possess larger calculated predicted spontaneous transition probability (39.97 s(-1)), emission cross section σem (10.18 × 10(-21)cm(2)) and σem × Δλeff (...

متن کامل

R2O3 (R = La, Y) modified erbium activated germanate glasses for mid-infrared 2.7 μm laser materials

Er(3+) activated germanate glasses modified by La2O3 and Y2O3 with good thermal stability were prepared. 2.7 μm fluorescence was observed and corresponding radiative properties were investigated. A detailed discussion of J-O parameters has been carried out based on absorption spectra and Judd-Ofelt theory. The peak emission cross sections of La2O3 and Y2O3 modified germanate glass are (14.3 ± 0...

متن کامل

Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass

Er(3+) doped Y2O3 and Nb2O5 modified germanate glasses with different Er(3+) concentrations were prepared. J-O intensity parameters were computed to estimate the structural changes due to the additions of Y2O3 and Nb2O5. The main mid-infrared spectroscopic features were investigated. To shed light on the observed mid-infrared radiative behavior, 975 nm and 1.53 μm emission spectra along with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014